On a Li-Stević Integral-Type Operators between Different Weighted Bloch-Type Spaces

نویسندگان

  • Yanyan Yu
  • Yongmin Liu
چکیده

First, we introduce some basic notation which is used in this paper. Throughout the entire paper, the unit disk in the finite complex plane C will be denoted by D. H D will denote the space of all analytic functions on D. Every analytic self-map φ of the unit disk D induces through composition a linear composition operator Cφ fromH D to itself. It is a well-known consequence of Littlewood’s subordination principle 1 that the formula Cφ f f ◦ φ defines a bounded linear operator on the classical Hardy and Bergman spaces. That is, Cφ : H → H and Cφ : A → A are bounded operators. A problem that has received much attention recently is to relate function theoretic properties of φ to operator theoretic properties of the restriction of Cφ to various Banach spaces of analytic functions. Some characterizations of the boundedness and compactness of the composition operator between various Banach spaces of analytic functions can be found in 2–6 . Recently, Yoneda in 7 gave some necessary and sufficient conditions for a composition operator Cφ to be bounded and compact on the logarithmic Bloch space defined as follows:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces

In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.

متن کامل

Estimates of Norm and Essential norm of Differences of Differentiation Composition Operators on Weighted Bloch Spaces

Norm and essential norm of differences of differentiation composition operators between Bloch spaces have been estimated in this paper. As a result, we find characterizations for boundedness and compactness of these operators.

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009